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Abstract. This paper proposes a new method that extends the efficient global optimiza-
tion to address stochastic black-box systems. The method is based on a kriging meta-
model that provides a global prediction of the objective values and a measure of prediction
uncertainty at every point. The criterion for the infill sample selection is an augmented
expected improvement function with desirable properties for stochastic responses. The
method is empirically compared with the revised simplex search, the simultaneous perturba-
tion stochastic approximation, and the DIRECT methods using six test problems from the
literature. An application case study on an inventory system is also documented. The results
suggest that the proposed method has excellent consistency and efficiency in finding global
optimal solutions, and is particularly useful for expensive systems.

Key words: Efficient global optimization, expected improvement, kriging, stochastic black-
box systems.

1. Introduction

Optimization methods for stochastic black-box systems have applications in
many areas such as engineering and discrete-event system simulation. For
example, in a metal-forming shop, the manufacturer may want to adjust
certain process parameters, such as forming temperature and die geome-
try, to maximize the performance of the manufacturing system. The sys-
tems here are ‘stochastic’ because the measured outputs contain random
errors. Thus, the objective function is the expected output. The manufac-
turing system is treated as a ‘black box’ because no closed-form formula-
tion or gradient information of the objective function is available. In this
paper, by the terms ‘stochastic’ or ‘noisy,’ we mean that these experiments,
if repeated, will give different results. They are not to be confused with the
experiments whose results deviate from the ‘true’ responses, but repeated
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runs will give the same output, as the cases with many numerical models
of physical phenomena.

Similar optimization problems may also be encountered in optimization
of stochastic discrete-event systems, which is often referred to as the area
of simulation optimization (Andradottir, 1998). Here a ‘simulation’ refers
to a random observation on the system performance such as the time a
customer waits. Although most of the efforts in simulation optimization
have been devoted to exploiting the underlining system structure for gra-
dient estimation, methods that treat the objective functions as black boxes
continue to be useful due to their generality and ease of use (Fu, 1994).

In practice on the factory floor, a common method for finding the opti-
mum is via ‘one-shot’ response surface methods (RSM). In one-shot RSM,
the system responses are fit with a regression model using a classic exper-
imental design, and the optimal solution is determined from this model.
This method can be considered inefficient in that it attempts to accurately
predict the response curve over the entire domain of feasibility, while we
are more interested prediction in the neighborhood of the optimum. In
addition, the regression models are often relatively simple and may not
adequately fit certain complex systems over the entire feasible region.

Sequential RSM procedures have been applied for simulation optimi-
zation (Safizadeh, 1984; Neddermeijer et al., 2000; Angün et al., 2002).
Instead of fitting the entire feasible region, small sub-regions (over which
a low order polynomial response surface is thought to adequately approx-
imate the function) are explored in succession, which leads to potential
improvement, until the slope is ‘approximately’ zero. Usually, in the ini-
tial phase, the sub-regions are fitted with first-order regression models via
fractional factorial designs. A move is taken towards the steepest descent
direction with step size determined by a line search. In the final phase, a
quadratic model with a central composite design is fit and the optimum
determined. There is another framework that uses a similar strategy as the
sequential RSM method. It is called sequential approximation optimization
(SAO), which is adopted in the area of multi-discipline design optimiza-
tion by Haftka et al. (1993) and Rodriguez et al. (2001). The basic concept
in the SAO framework is to minimize a local RSM approximation of the
objective function and constraints subjected to local move limits. The local
approximations are often quadratic response surfaces that match zero and
first order information, if available.

Additional optimization methods for stochastic black-box systems include
the Nelder–Mead simplex search procedure. The Nelder–Mead method
is a widely used non-derivative heuristic optimization method designed
originally for deterministic problems. Recently, it has been revised to solve
stochastic problems by Barton and Ivey (1996) and Humphrey and Wilson
(2000). Neddermeijer et al. (1999) empirically compared Barton and Ivey’s
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approach with the sequential RSM procedure and concluded that, in
general, the former performed more efficiently than the latter for the sim-
ulation model and test functions used in their study.

Another group of methods originated from the so-called stochastic
approximation (SA) methods (Kushner and Clark, 1978). The SA methods
are essentially gradient-based, with the gradients estimated either numer-
ically or analytically. Among numerous gradient estimation approaches,
here we only review the ones that treat the objectives as black boxes.
The Kiefer–Wolfowitz (1952) algorithm uses the finite difference methods
to estimate gradients. Spall (1992) proposed the simultaneous perturbation
stochastic approximation (SPSA) method for gradient estimation, which
requires only two evaluations per estimation, regardless of the dimension.
In fact, the sub-region regression in the above-mentioned sequential RSM
procedure is also a form of gradient estimation. In general, when ran-
dom errors exist, the finite-differences-like gradient estimation can be chal-
lenging: for the bias to be small, it is necessary to have a small distance
between points; but as the distance decreases, the variance of the estima-
tors tends to increase.

In the area of global optimization, methods for stochastic black-box sys-
tems have also been studied. Kushner (1964) and Žilinskas (1980) devel-
oped alternatives to response surface methods using the Bayes’ theorem.
The method, so-called Bayesian global optimization, is based on a sto-
chastic model of the objective function and is able to deal with noisy
responses. However, Kushner (1964) used a heuristic optimization method
to select the next point for sampling based on ‘simplified’ models; and
Žilinskas (1980) only considered one-dimensional problems. Motivated by
a modification to Lipschitzian optimization, Perttunen et al. (1993) and
Gablonsky et al. (2001) developed the so-called DIRECT algorithm. The
DIRECT method is a sampling algorithm, which requires no gradient
information, and decides where to search next based on previously col-
lected data. The name stands for ‘Dividing rectangles,’ which describes the
way the algorithm moves towards the optimum. The method performs a
balance between local and global search within bound constraints.

Heuristic methods, such as the genetic algorithm, simulated annealing, and
tabu search, can also be applied to solve stochastic black-box problems. A
major advantage of these methods is their universal applicability, as they
usually assume very little about the objective functions, not even the conti-
nuity or smoothness. Heuristic methods are particularly useful when the cost
per evaluation is inexpensive. For non-linear problems that are continuous
and smooth, it is generally believed that the heuristic methods require more
evaluations than other classes of methods mentioned above.

In recent years, promising new methods with their roots in the Bayesian
global optimization method were developed with a primary focus on
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deterministic problems. Jones et al. (1998) proposed the efficient global opti-
mization (EGO) algorithm, which utilizes a full kriging model to select sam-
ple points based on a rigorous search method. The new points, or ‘infill
samples,’ are selected based on a criterion called ‘expected improvement’
that balances the need to exploit the approximating surface with the need
to improve the approximation. The EGO algorithm and its improved ver-
sions have shown good generality and performance for various practical
problems in engineering design (Sasena et al., 2001, 2002). An additional
algorithm was developed by Sóbester et al. (2002), where gradient enhanced
radial basis functions (GERBF) are used as the meta-models to determine
the infill sampling points. This method showed advantages as compared to
more traditional gradient-based and guided-random search methods.

Since EGO has its roots in the Bayesian global optimization, a method
designed for stochastic responses, Jones et al. (1998) and Sasena (2002)
commented that the EGO method would likely be adaptable to address
stochastic systems. However, studies on this adaptation are lacking in the
research literature. In this paper, we propose a formulation to extend the
EGO scheme to stochastic systems, and compare it with alternative meth-
ods. We refer to our new method as sequential kriging optimization (SKO)
to more clearly differentiate it from alternative approaches.

In Section 2, we describe the proposed method and the associated
assumptions. The key ingredient in the method is the so-called ‘augmented
expected improvement’ function that accommodates stochastic black-box
function evaluations. Section 3 provides a simple numerical example to fos-
ter an intuitive understanding of the method. In Section 4, the performance
of proposed method is compared empirically with alternative approaches
from Spall (1992), Humphrey et al. (2000), and Gablonsky et al. (2001)
using six test problems. Section 5 provides an application case study of
SKO on an inventory system. Section 6 addresses the limitations and other
relevant issues. Finally, Section 7 summarizes the conclusions and describes
opportunities for future research.

2. Assumption and Formulation

2.1. the optimization problem

The goal is to minimize the objective (or loss) function, f (x), within the
feasible region, χ , i.e.:

min
x∈χ

f (x) (1)

where f (x) represents the expected performance of a system and x is a d-
dimensional vector of parameters to be adjusted. We consider the system as
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a black box that provides no information other than the measurements of
system performance. We assume that the feasible region χ ⊂Rd is continu-
ous, connected, and compact. The measurement Y of the objective function
contains random error or noise:

Y =f (x)+ ε (2)

In this paper, we assume that random errors from successive measurements
are independent identically distributed (IID) normal deviates.

2.2. overview of the procedure

The outline for the proposed SKO method is identical to that of EGO by Jones
et al. (1998). For the matter of completeness, we review that framework:

Step 1. Build an initial kriging meta-model of the objective function.
Step 2. Use cross validation to ensure that the kriging prediction and

measure of uncertainty are satisfactory.
Step 3. Find the location that maximizes the Expected Improvement (EI)

function. If the maximal EI is sufficiently small, stop.
Step 4. Add an evaluation at the location where the EI is maximized. Update

the kriging meta-model using the new data point. Go to Step 3.

The proposed SKO methods differ from the original EGO methods in the
implementation of the kriging meta-model in Step 1 and in the formula
for the EI function in Step 3. These differences are motivated largely by
the need to accommodate random errors, as described in Sections (2.3)–
(2.8). For Step 2, as in the original EGO, we generate a prediction with one
data point excluded from the data set. Then we check whether that data
point falls within a certain confidence interval for the prediction. If the test
fails, appropriate transformations such as log or inverse may be applied to
the response values. For example, when the response values vary greatly in
magnitudes, a log transformation can be helpful for generating a better kri-
ging prediction.

2.3. kriging meta-modeling with random errors

In kriging meta-modeling, the response is assumed to be the sum of a lin-
ear model, a term representing the systematic departure (bias) from the lin-
ear model, and noise (Cressie, 1993):

Y (x)=
k∑

i=1

βihi(x)+Z(x)+ ε (3)
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where h and β are basis functions and their coefficients, respectively. Z is
the systematic departure and ε is the random error. The basis functions
are usually polynomials, and often only one term, i.e., the constant term, is
sufficient for generating good kriging meta-models (Sacks et al., 1989a,b).

The kriging meta-model derives from an estimation process in which the
systematic departure from the linear model, Z, is assumed to be a real-
ization of a stationary Gaussian stochastic process. We use the following
formula to describe the covariance of systematic errors between outputs at
two points t = (t1, . . . , td) and u = (u1, . . . , ud):

cov [Z(t),Z(u)]=σ 2
ZRZ(t,u)=σ 2

Z exp

⎡

⎣−
d∑

j=1

θj (tj −uj )
2

⎤

⎦ (4)

where σ 2
Z is the variance of the stochastic process, RZ is the correlation

function (sometimes referred to as the Gaussian correlation function), and
θj is a scale parameter associated with dimension j . A larger θj implies a
higher ‘activity,’ i.e., lower correlation within the dimension j . Under this
covariance structure, the correlation between points decreases as the dis-
tance between them increases, which is a desirable property. Other forms
of covariance structures have also been used in modeling computer experi-
ments, a detailed summary of which can be found in Santner et al. (2003).

As mentioned previously, in this study the random errors are assumed
to be IID. We denote by σ 2

ε the variance of the random error, and by
Y1, Y2, . . . , Yn the data drawn from an n-point design {x1,x2, . . . ,xn}. To
describe the kriging model predictor, we introduce the following notation:

h′
x = [h1(x), . . . , hn(x)]

V = [cov(Yi, Yj )]1�i,j�n = [cov(Z(xi),Z(xj ))]1�i,j�n + [σ 2
ε δij ]1�i,j�n

v′
x = [cov(Z(x1),Z(x)), . . . , cov(Z(xn),Z(x))]

y′ = [Y1, . . . , Yn]

F = [hl(xi)]1�i�n

where ′ denotes the transpose and δij = 1 for i = j , and δij = 0 for i �= j .
Note that the covariance matrix, V, includes contributions from the ran-
dom error, which was not considered in the original EGO method. The
best linear predictor (BLP) of Y is:

Ŷ (x)=h′
xβ̂ + v′

xV−1(y −Fβ̂) (5)
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where β̂ = (F′V−1F)−1F′V−1y is the generalized least squares estimate of β.
And the mean squared error (MSE) of prediction can be obtained as:

s2(x)=σ 2
z − [h′

x, v′
x]
[

0 F′

F V

]−1 [hx
vx

]
(6)

2.4. maximum likelihood estimation of the parameters

In this paper, we focus on maximum likelihood estimation (MLE) of the
parameters σ 2

Z, σ 2
ε , and θi (for i = 1, . . . , d) in the formulations (4)–(6).

Denote by R the correlation matrix between data Y1, Y2,, . . . , Yn, i.e., R =
V
/
(σ 2

Z +σ 2
ε ). Thus, for the ij th component of R, we have:

Rij =
{

1 (i = j)

gRZ(xi ,xj ) (i �= j)
(7)

where g=σ 2
Z/(σ 2

Z +σ 2
ε ). Note that here R depends only on the scale param-

eters, θi (for i = 1, . . . , d) and the parameter g. Also, the value (1 − g) is
referred to as the ‘nugget’ in geo-statistics (Cressie, 1993).

Sacks (1989a, b) derived the likelihood (omitting constants):

p(y|R)∼ 1
(det R)1/nσ̂ 2

, where σ̂ 2 = 1
n
(y −Fβ̂)′R−1(y −Fβ̂) (8)

Maximizing (8), we can obtain estimates for θi (for i =1, . . ., d) and g, and
then compute σ̂ 2. As σ̂ 2 = σ̂ 2

Z + σ̂ 2
ε , with g known, we can also get the esti-

mates for σ 2
Z and σ 2

ε .

2.5. the design for initial fit

Step 1 described in Section 2.2 involves an experimental design for the
initial kriging fit. Design problems of this type have been studied in a
wealth of the literature on design and analysis of computer experiments
(DACE). There are two main design strategies: space-filling and crite-
rion-based. Space-filling designs include Latin hypercube designs (McKay
et al., 1979; Stein, 1987), uniform designs (Fang et al., 2000), and Monte
Carlo designs (Niederreiter, 1992). Design criteria that have been proposed
include entropy (Lindley, 1956), MSE (Sacks et al., 1989a, b), and maximin
and minimax distance (Johnson et al., 1990). For summaries on this area,
see Santner et al. (2003) and Koehler, et al. (1996).

In this research, we follow Jones et al. (1998) and use Latin hyper-
cube designs that maximize the minimum distance between design points.
The MATLAB� Statistics toolbox subroutine ‘lhd’ was used to generate
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these designs. The number of points for the initial design may depend on
the user’s prior information about the objective function. That is, if it is
believed that the objective contains many non-negligible fine features (very
‘bumpy’), more points should be used. Otherwise, fewer points may be ade-
quate. In this study, we adopt the ‘rule of thumb’ by Jones et al. (1998) for
the default number of points. This number is 10×d, where d is the dimen-
sion of the input space. In addition, to estimate the random errors, after
the first 10×d points are evaluated, we add one replicate at each of those
locations, where the 1st-dth best responses are found (thus there are 11×d

total points in the initial design).
For one-dimensional cases, the Latin hypercube design has evenly spaced

points. In this case, when the number of points is few (usually <8), the
maximum likelihood estimates (MLE) sometimes overestimate θ1 and hence
can generate a low-quality prediction. This phenomenon was also reported
by Sasena (2002). However, this issue does not appear to pose a serious
threat to our optimization scheme, because subsequent samples break up
the even spacing and improve the prediction. In addition, Santner et al.
(2003) suggested that restricted maximum likelihood (REML) can be used
to mitigate-related problems.

2.6. alternative expected improvement functions

As mentioned in Section 2.2, Step 3, EI is the criterion for selecting the
location of the subsequent infill point. For deterministic problems, Jones
et al. (1998) used the following EI function:

E[I (x)]≡E
{
max

⌊
f (x∗)−Yp(x),0

⌋}
. (9)

where x* is the current best solution and where

Yp(x)∼N
⌊
Ŷ (x), s(x)2

⌋
. (10)

Note that Yp(x) can be interpreted as the Bayesian estimate for the poster-
ior distribution of an unknown function [for detailed Bayesian interpreta-
tion of the kriging model, refer to the Bayesian approaches for modeling
computer experiments by Currin et al. (1991) and O’Hagan (1989)]. How-
ever, in the context of stochastic function evaluations, as the true objec-
tive values at sampled locations are not known for sure, the applicability
of Equation (9) is unclear. Two difficulties are involved here: (1) the cur-
rent best solution, x*, is not well-defined, and (2) the prediction uncer-
tainty associated with f (x∗) is not accounted for.

In a different but related context, Williams et al. (2000) considered
a sequential design of computer experiments to minimize the integrated
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response function over a set of uncontrollable ‘environmental’ variables.
From this work, the following EI formulation is implied:

E[I (x)]≡E
⌊

max
(
Yp(x∗)−Yp(x),0

)⌋
. (11)

This formulation addresses the prediction uncertainty associated with the
current best solution. However, it leads to E[I (x)]→0, when x→x∗, mean-
ing that no replicate would ever be run at the location that is considered
the current best. This property is not desirable because there is benefit from
a replicate at the current best solution as it reduces the prediction error. In
addition, computation of the expectation is relatively expensive.

2.7. the proposed augmented ei function

As indicated above in Equation (11), one route towards developing an in-
fill selection criterion for stochastic evaluations would be to redefine the
improvement function, I (x), and calculate the expectation of it. In this
paper, we adopt a different approach that modifies the original EI to pro-
vide certain desirable properties. We propose the following augmented EI
function:

EI (x)≡E
[
max

(
Ŷ (x∗∗)−Yp(x),0

)]
·
(

1− σε√
s2(x)+σ 2

ε

)
(12)

where x** stands for the current ‘effective best solution,’ which is deter-
mined as explained below. In Equation (12), the expectation is conditional
given the past data and given estimates of the correlation parameters.
Therefore, the expectation is computed by integrating over the distribution
of Yp(x) in Equation (9), with Ŷ (x∗∗) a fixed value. Based on results in
Jones et al. (1998), the expectation can be calculated analytically as follows:

E
[
max

(
Ŷ (x∗∗)−Yp(x),0

)]
=
(
Ŷ (x∗∗)− Ŷ (x)

)
�

(
Ŷ (x∗∗)− Ŷ (x)

s(x)

)

+s(x)φ

(
Ŷ (x∗∗)− Ŷ (x)

s(x)

)
(13)

where � and φ are the standard normal probability density and cumula-
tive distribution functions, respectively. Note that Equation (13) is non-zero
when x = x**, which is a good property because replicates at the effective
best solution reduce the prediction uncertainty.

To determine the effective best solution, x**, we introduce a utility func-
tion, denoted by u(x), to account for the uncertainty associated with the
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predicted objective values. In general, the form of the utility function may
be selected according to the user’s preference. In this study, we adopt the
following formula:

u(x)=−Ŷ (x)− cs(x) (14)

where c is a constant that can reflect the degree of risk aversion. We select
c = 1.0 as our default, which implies a willingness to trade 1 unit of the
predicted objective value for 1 unit of the standard deviation of prediction
uncertainty.

The effective best solution, x**, can be derived by maximizing u(x) over
the entire feasible region. This approach, however, can be computationally
costly. As the locations that have never been observed presumably contain
larger uncertainty, with little loss but noticeable computational benefit, here
we maximize u(x) over previously observed locations, x1,x2,xn, i. e.:

x∗∗ = arg max
x1,x2,... ,x1n

[u(x)] . (15)

Thus, the first term (the expectation term) in Equation (12) represents how
much we expect the objective value at x to be better than Ŷ (x∗∗), which is
the prediction at the current best solution. The term reduces to the original
EI function of Jones et al. (1998) in equation (9), when σε goes to zero.
However, unlike in Equation (11), Ŷ (x∗∗) is not included in the expectation,
so this term is not strictly how much the objective value at x is expected
to be better the objective value at x**.

The second term of the product in Equation (12) is a factor designed to
account for the diminishing return of additional replicates as the prediction
becomes more accurate. Note that at (and only at) x**, the expectation
term in Equation (12) is proportional to the posterior standard deviation
of the objective value. Therefore, inspired by Bayesian concepts, this factor
is equal to the ratio of the reduction in the posterior standard deviation
after a new replicate is added. This factor approaches one when the vari-
ance of the random errors approaches zero.

In summary, we feel that the augmented EI criterion in Equation (12) is
consistent with our intuition about the ‘usefulness’ of the additional sample
at a particular location. This partially intuition-based infill sampling crite-
rion is further justified by the performance of the algorithm as shown in
later sections.

From Section 2.2, Step 3, the location of the next evaluation, xn+1, is
selected by maximizing EI, i.e.:

xn+1 =arg max
x

EI (x). (16)
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Here the EI maximization problem is solved using a Nelder–Mead simplex
approach.

2.8. the stopping criterion

As mentioned in Section 2.2, the optimization scheme stops when

max
x

EI (x)<	s, (17)

where 	s is the stopping tolerance. To accommodate stochastic evaluations,
we generally require (17) to be satisfied a number of times consecutively
before the final stopping. In this paper, we use (d + 1) for this number of
times.

In practice, we also found sometimes it is convenient to use a variation
of (17):

max
x

EI (x)

max(Y1, Y1, . . . , Yn)−min(Y1, Y1, . . . , Yn)
<	r (18)

where the left-hand side is a ratio between the maximal EI and the ‘active
span’ of the responses, which we also refer to as the maximal ‘relative EI.’
An advantage of this stopping criterion is that the user can set the ‘rela-
tive’ tolerance, 	r , without having to know the magnitudes of the problem
responses.

3. An Illustrative Example

In this section, we use the two-dimensional six-hump camel back function
(Branin, 1972) to illustrate search patterns of the proposed SKO optimiza-
tion method. The formula for the function is available in Table 1, and a
surface plot of the function is displayed in Figure 1. The function is sym-
metric about the origin and has three pairs of local minima, which include
a pair of global minima. To simulate measurement errors, we add indepen-
dent random errors that are ∼N(0,0.122).

In Figure 2, the search pattern of the SKO method is displayed together
with the contour of the objective function. There are a total of 44
evaluation points, consisting of three groups. The initial 20 points are
based on a Latin hypercube design, the following two replicates are placed
on the two best points from the initial design, and thereafter infill points
are selected by maximizing the EI criterion. For the infill points, the
sequence of the evaluations is marked in numbers. Note that the EI cri-
terion balances the need to exploit the meta-model (local search) and
the need to improve the meta-model (global search). Thus, some points are
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Figure 1. Surface of the six-hump camel back function (Branin, 1972).

placed near the global minima, while others are placed in ‘unexplored’ ter-
ritory away from the global minima. It is random which of the two global
minima will eventually be selected as the best solution.

As compared to most conventional methods, an additional advantage of
the SKO method is that at the end it provides a global meta-model of
the responses. Figure 3 displays the final kriging prediction as well as the
different between the prediction and the true objective function. Note that
the prediction gives a good match in general, while it provides more accu-
rate information on areas that are near the global optima. This may be
particularly helpful when some local minima are nearly as good as global
minima and considerations not captured in the objective function are rele-
vant to decision-makers.

4. Empirical Comparison with Alternative Methods

In this section, the proposed SKO optimization method is empirically
compared with three alternative approaches from the literature. The first
alternative considered is the SPSA from Spall (1992, 1998). The second
approach is the revised simplex search (RSS) procedure, a variant of the
Nelder–Mead method, proposed by Humphrey and Wilson (2000). As the
original RSS procedure was not designed to handle constraints, we modify
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Figure 2. Evaluation points and contour of the six-hump camel back function. ×: initial-fit
design (20 points); �: replicates (2 points); ©: infill samples (22 points, with numbers indicating
the sequence).

it so that whenever a point is infeasible, the algorithm selects the nearest
feasible point instead. The third approach is the DIRECT method devel-
oped by Gablonsky and Kelley (2001).

Five test functions are used to compare these optimization methods.
They are listed in Table 1, where we document the number of dimen-
sions, objective function formula, region of interest, number of local min-
ima (Nlocal), number of global minima (Nglobal), and global minima x*, f*.
The dimensions of these test functions range from two to five. The ‘Tilted’
Branin function was created by adding a term 0.5x1 to the original Branin
function (Branin and Hoo, 1972), so that not all local minima are global
minima. We also included two versions of a five-dimensional test problem
from Ackley (1987). The first problem uses the traditional feasible region
[−32.8,32.8]5 and has hundreds of local minima, causing all of the alter-
native methods to fail to find the global minimum in our experiments. The
second version involves a relatively small number of local minima with a
restricted region of interest [−2,2]5.

The noises associated with the response are normally distributed in the
tests. The size of the noise was selected so that the standard deviation was
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Figure 3. (a) The final kriging prediction. (b) The difference between the prediction and the true
function.
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approximately 0.5−4% of the range of the responses in the region of inter-
est. Each optimization run is independently randomized. For the SPSA and
RSS methods, each run has a random starting point. For the SKO method,
the initial-fit designs undergo random symmetry operations. Unfortunately,
for the DIRECT method, the starting points are always fixed, which often
causes all runs in a test to have similar paths. This fact limits our ability
to draw more general conclusions on the DIRECT method using a small
number of test functions.

We documented the histories of the true objective values corresponding
to the current best solutions in solving the six-hump camel back function
with noise ∼ N(0,0.122). In Figure 4, the results of 10 runs are displayed
for every method. Note that, due to the random errors, sometimes optimi-
zation algorithms can be ‘mislead’ and the objective function values may
become worse. Visual examination of this graph suggests that the SKO
and DIRECT methods consistently find the global minima, while the other
two methods sometimes converge to non-global local minima. For the runs
that reach global minima, Figure 5 shows the average, the best 10%, and
the worst 10% performance out of 50 random runs. In this test, SKO and
DIRECT seem to have better efficiency that that of SPSA and RSS. Also,
SPSA and RSS have relatively larger variance in the objective histories.

Figure 4. Objective histories in solving the six-hump camel back function (10 random runs each
method).
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Figure 5. The average, the best 10%, and the worst 10% performance of the runs that reach
global optima.

Next, we consider the efficiency of the optimization algorithms by inves-
tigating the number of function evaluations needed to come within a cer-
tain relative distance of the true global minima. Following Barton (1984),
we define the following measure for iteration i:

Gi = f (x(1))−f (x(i))

f (x(1))−f ∗ (19)

where f ∗ stands for the true global optima. Therefore, f (x(1))− f ∗ is the
gap between the starting value and the global minima, and Gi describes the
reduction of this gap that is achieved after i iterations of the optimization
run (for SKO, where the initial design consists of several points that are all
starting values, we choose f (x(1)) equal to the median of these values). In
this paper, we evaluate the efficiency of the algorithms using S0.99, which is
the cumulative number of evaluations performed until G�0.99.

Each optimization method has different parameters to control the stop-
ping. Here we adjusted the stopping criteria to give every method a
reasonable chance of finding the global optimum. In other words, these
criteria are ‘tight’, such that G�0.99 can usually be achieved if the search
is not ‘trapped’ in the local optima. The stopping criteria are listed in
Table 2. Note that the DIRECT method does not have a specific parameter
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Table 2. Stopping criteria

SPSA Step size is less than 10−8 in the normalized input space [0, 1]d .
RSS Simplex size is less than 10−8 in the normalized input space [0, 1]d .
DIRECT Number of evaluations exceeds 200×d (d: dimension).
SKO Maximal relative EI is less than 0.0005.

Table 3. Percentage of runs that reach G�0.99, average of S0.99, and standard deviation of S0.99 (in
parentheses)

No. Test Noise SPSA RSS DIRECT SKO
functions

1 Six-hump ∼ N (0, 0.122) 70%, 86%, 100%, 100%,
camel back 40.7 (28.2) 51.3 (29.7) 22.3 (14.6) 29.2 (5.7)

2 Six-hump ∼ N (0, 0.242) 72%, 82%, 96%, 94%,
camel back 57.5(37.3) 65.3 (53.9) 39.2 (37.2) 29.4 (6.6)

3 ‘Tilted’ ∼ N (0, 2.02) 20%, 22%, 100%, 98%,
Branin 51.8 (42.5) 58.8 (43.5) 37.2 (33.6) 28.4 (5.3)

4 Hartman 3 ∼ N (0, 0.082) 44%, 42%, 54%, 96%,
127.5 (145.2) 87.5 (64.1) 213.6 (132.4) 45.4 (7.9)

5 Ackley 5 ∼ N (0, 0.062) 36%, 38%, 100%, 94%,
([−2,2]d ) 856.1 (468.6) 310.4 (132.6) 248.4 (84.3) 98.9 (5.6)

for stopping, so a limit on the number of evaluations is imposed instead
(in theory, it is possible that infinitely many evaluations may be needed to
determine S0.99, but to run the methods indefinitely is not practical). For
each test, 50 random runs are conducted for each method. The percentages
of the runs that reach G�0.99 are recorded. And among these runs, aver-
ages and standard deviations of S0.99 are computed. The results of the tests
are listed in Table 3.

Based on the results in Table 3, we have the following findings. (1) As we
expected, in general the global methods, DIRECT and SKO, have consider-
ably higher percentages of runs that find the global optima than the local
methods, SPSA and RSS. Specifically, the SKO method has good consis-
tency in all test cases. The DIRECT method has high percentages in most
cases, except for the Hartman 3 function. The exception may be because
the number of evaluations, 200×d, is not enough in this case. (2) Consid-
ering only the runs that do find global minima, the number of evaluations
(S0.99) needed by SKO is the least on average for the majority of the test
cases, except test No. 1, where DIRECT is the most efficient method. But
DIRECT’s efficiency is poor in the Hartman 3 case. The fact that SKO,
being a global method, is consistently more efficient than the local methods
is impressive, because resources are required to ensure the globality of the
solution. (3) Probably more importantly, the standard deviations of S0.99
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for SKO are significantly less than those for SPSA, RSS, and DIRECT. (4)
In addition, data from test Nos. 1 and 2 suggest that the performance of
SKO is less sensitive to increased noise levels than other methods. Observa-
tions (3) and (4) are presumably because SKO is based on a global meta-
model of the expected outputs, which ‘smoothes out’ the affect of noises.
(5) At last, the efficiency advantages of SKO seem to become more pro-
nounced as the number of dimensions increases.

The Ackley 5 function with the traditional region of interest [−32.8,32.8]5

is a special problem here, because it is very ‘bumpy,’ containing hundreds of
local minima. Using the default experimental design for initial fit, we find
that the kriging models developed during specific test runs have large appar-
ent prediction inaccuracies (this is not surprising considering that the num-
ber of local minima greatly exceeds the number of samples). As the kriging
approximation is poor, we observe that the search pattern by SKO appears
not better than a random search. And we expect that the proposed SKO
method may not perform well.

As mentioned previously, for the Ackley 5 function in [−32.8,32.8]5,
with noise ∼ N(0,0.062), none of the four compared methods was able to
find the global minimum in any of our test runs Figure 6. Thus, here we
compare the objective values of the best solutions found after 150 evalu-
ations. The results of 25 independent runs for each method are displayed
in Figure 4. As evaluated using the mean objective value achieved, the
DIRECT method seems to provide the best performance in this test. How-
ever, as mentioned previously, because the DIRECT method uses a fixed
set of starting points, all runs lead to very similar results. Interestingly,
SKO also has the relatively good performance in general, followed by RSS,
and then SPSA. We speculate that, although the kriging approximation is
not ideal, the global search component in the EI criterion provides some
heuristic-like mechanism to look into regions not previously visited (i.e.,
for which there is large uncertainty about the predicted objective value)
for the global optimum. Also, the kriging meta-modeling approach com-
bined with the utility maximization selection methods together may provide
added assurance that the best solutions encountered are not lost. We sug-
gest that additional investigation of situations in which the initial kriging
model is highly inaccurate merit further study.

5. Application Example: Inventory System

In this section, we apply the SKO method to optimize the ordering pol-
icy of an inventory system, which is evaluated using a simulation program
provided by Law and Kelton (2000). In this problem, there are two deci-
sion variables: the reorder point (x1) and the maximal holding quantity
(x2). The objective function is the expected total cost per month. The
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Figure 6. The best objective values after 150 evaluations for Ackley 5 function in [−32.8,32.8]5

(the range of responses in the feasible region is approximately [0, 22]).

ordering quantity, Z, is decided as follows:

Z =
{

x2 − I if I <x2

0 if I �x2

where I is the inventory level at the beginning of each month. The model is
representative of an actual inventory system, which involves ordering cost,
holding cost, and shortage cost. The time between demands and the sizes
of the demands are generated as random variables; and the inventory sys-
tem is simulated for a period of 120 months. As the outputs of replicated
simulations may vary considerably, we use the average output of 10 repli-
cated simulations as a single function evaluation.

The region of interest is 20 � x1 � 60 and 40 � x2 � 100. The initial-fit
points and the sequential infill points are indicated in Figure 7. The stop-
ping criterion is when the maximal relative EI is less than 0.001, which
was reached in a total of 47 evaluations. The optimal solution is found
at (25.05, 62.16), where the expected total cost per month equals 116.83.
In addition, kriging global meta-models are created as by-products of the
optimization, which provides useful visualization for understanding the
simulation outputs in this case. Figure 8 (a) shows the contour of the final
kriging prediction. Also the variance of the evaluation random errors is
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Figure 7. Evaluation points for solving the inventory system problem. ×: initial-fit design (20
points); �: replicates (2 points); ©: infill samples (25 points, with numbers indicating the
sequence).

estimated to be 0.31. Furthermore, from Equation (6), we can compute the
MSE of the prediction, which is displayed in Figure 8 (b). Note that this
figure is different from Figure 3 (b), where the actual discrepancy between
the prediction and the true function is shown (here the true function is
not known). As we expected, the uncertainty of the prediction is low where
more evaluation points are available and high, where evaluation points are
sparse.

We also used alternative methods, RSS, SPSA, and DIRECT, to solve
this simulation optimization problem and their performances are com-
pared. In this application study, as the true objective function is non-ana-
lytical, we know neither the true optimum value, nor exactly how good
our current solution is. Therefore, a rigorous comparison is relatively diffi-
cult. Here in Figure 9 we display the history of the ‘best response observed
so far’ of an arbitrary run for every method (note that Figure 9 is unlike
Figures 4 and 5 which display the true objective values corresponding to
the current best solution). Figure 9 shows that the local methods, SPSA
and RSS, and the global methods, DIRECT and SKO, converged to the
same solution. This is not a surprise, because from the meta-model [Fig-
ure 8 (a)], it seems that the problem has only single local optimum. In this
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Figure 8. (a) The final kriging prediction of the expected cost per month. (b) MSEs of the final
kriging prediction.
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Figure 9. The histories of the best response observed in solving the inventory system problem.

case, DIRECT and SKO demonstrate comparable efficiency, and they out-
perform RSS and SPSA by only a moderate margin.

6. Limitations and Other Relevant Issues

We find that a limitation of SKO (and any EGO type method) can be due
to the algorithm’s overhead costs, which include fitting the kriging meta-
model and maximizing the EI function. For example, when the number of
samples is 150, the computing time per iteration reaches about 60 sec on a
Pentium III 1.2G processor. Therefore, the SKO method is suitable only for
‘expensive’ systems. In particular, probably one should consider SKO only
when the cost of a function evaluation is much higher than the cost of fit-
ting a kriging meta-model.

In addition, the cost of fitting kriging meta-models increases as the num-
ber of samples increases. And to generate useful predictions, a larger num-
ber of samples are needed when the input space dimensionality becomes
higher. Therefore, the algorithm may be impractical when the dimension-
ality is too high. In our studies, the maximum number of dimensions tried
was 10.

The problems presented in this paper are all simple bound constrained
problems. How ever, the SKO method can be derived to address more
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complex constrained problems. The potential approaches include the penalty
method, the infeasibility probability method, and the constrained maximi-
zation of EI method. For more detailed information, please refer to the
review work by Sasena (2002).

7. Conclusions and Future Work

In this paper, we proposed the SKO method as an extension of EGO of
Jones et al. (1998) to address stochastic black-box systems. We compared
SKO with three relevant alternatives from the literature using six test prob-
lems. The proposed SKO method compared favorably with alternatives in
terms of consistency in finding global optima and efficiency as measured
by number of evaluations. Also, in the presence of noise, the augmented EI
function for infill sample selection appears to achieve the desired balance
between the need for global and local searches.

Kriging meta-models are very flexible and can approximate a wide vari-
ety of functions. However, if there are not sufficient samples or the true
objective function is not smooth and lacks any systematic trend, the kriging
approximation may be poor and the efficiency of SKO could conceivably
drop to the level of a purely random search. Also, an additional limitation
of the SKO method is the relatively high overhead cost incurred in fitting
the kriging model.

Ongoing efforts are addressing the overhead cost issue by re-utilizing
information from the previous iteration. In addition, theoretical analysis
on the probability and rate of finding global optima is important for fur-
ther development of the method. Finally, the performance of SKO under
higher levels of noise, for constrained problems, and for very bumpy objec-
tive functions needs further investigation.
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